By Topic

Power-gating-aware high-level synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Eunjoo Choi ; Syst. IC Bus. Team, LG Electron., Seoul, South Korea ; Changsik Shin ; Taewhan Kim ; Youngsoo Shin

A problem inherent in designing power-gated circuits is the overhead of the state-retention storage required to preserve the circuit state in standby mode. Reducing the amount of retention storage is known to be the most influential factor in minimizing the loss of the benefit (i.e. power saving) by power-gating. In this paper, we address a new problem of high-level synthesis with the objective of minimizing the size of retention storage to be used in the power-gated circuits. Specifically, we propose a complete design framework, called HLS-pg, that starts from the power-gating-aware scheduling, allocation, and controller synthesis down to the final circuit layout. The key contribution of the work is to solve the power-gating-aware scheduling problem, namely, scheduling operations that minimizes the number of retention registers required at the power-gating control step, while satisfying resource and latency constraints. In experiments on benchmark designs implemented in 65-nm CMOS technology, HLS-pg generates circuits with 27% less leakage current, with 6% less circuit area and wirelength, compared to the power-gated circuits produced by conventional high-level synthesis.

Published in:

Low Power Electronics and Design (ISLPED), 2008 ACM/IEEE International Symposium on

Date of Conference:

11-13 Aug. 2008