Cart (Loading....) | Create Account
Close category search window

Variation-aware gate sizing and clustering for post-silicon optimized circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng Zhuo ; EECS Dept., Univ. of Michigan, Ann Arbor, MI, USA ; Blaauw, D. ; Sylvester, D.

As technology is aggressively scaled, nano-regime VLSI designs are becoming increasingly susceptible to process variations. Unlike pre-silicon optimization, post-silicon techniques can tune the individual die to better meet the power-delay constraints. This paper proposes a variation-aware methodology for the simultaneous gate sizing and clustering for post-silicon tuning with adaptive body biasing. The proposed methodology uses an accurate table look-up model and fully explores the interaction between gate sizing and optimal body bias based clustering. In addition, it is suitable for industrial test cases with tens of thousands gates. Our optimization methodology includes a body bias distribution alignment strategy to mitigate the impact of critical gates. In this way, the cluster's body bias voltage is not simply determined by only a few critical gates. We also prove the linear dependence between the mean of the body bias probability distribution and the gate size. Based on this, we further investigate a simultaneous sizing and re-clustering algorithm for better leakage savings. A circuit re-balancing and gate snapping scheme is then suggested to map the solution to a standard cell library. Compared with arecently-reported method, the proposed methodology can obtain on average 25.5% leakage saving at nearly the same run time.

Published in:

Low Power Electronics and Design (ISLPED), 2008 ACM/IEEE International Symposium on

Date of Conference:

11-13 Aug. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.