By Topic

Coordinated Scheduling of Residential Distributed Energy Resources to Optimize Smart Home Energy Services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Michael Angelo A. Pedrasa ; Centre for Energy and Environmental Markets and School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia ; Ted D. Spooner ; Iain F. MacGill

We describe algorithmic enhancements to a decision-support tool that residential consumers can utilize to optimize their acquisition of electrical energy services. The decision-support tool optimizes energy services provision by enabling end users to first assign values to desired energy services, and then scheduling their available distributed energy resources (DER) to maximize net benefits. We chose particle swarm optimization (PSO) to solve the corresponding optimization problem because of its straightforward implementation and demonstrated ability to generate near-optimal schedules within manageable computation times. We improve the basic formulation of cooperative PSO by introducing stochastic repulsion among the particles. The improved DER schedules are then used to investigate the potential consumer value added by coordinated DER scheduling. This is computed by comparing the end-user costs obtained with the enhanced algorithm simultaneously scheduling all DER, against the costs when each DER schedule is solved separately. This comparison enables the end users to determine whether their mix of energy service needs, available DER and electricity tariff arrangements might warrant solving the more complex coordinated scheduling problem, or instead, decomposing the problem into multiple simpler optimizations.

Published in:

IEEE Transactions on Smart Grid  (Volume:1 ,  Issue: 2 )