By Topic

Automatic target detection and recognition in multiband imagery: a unified ML detection and estimation approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaoli Yu ; Sci. Applications Int. Corp., San Diego, CA, USA ; Hoff, L.E. ; Reed, Irving S. ; An Mei Chen
more authors

Multispectral or hyperspectral sensors can facilitate automatic target detection and recognition in clutter since natural clutter from vegetation is characterized by a grey body, and man-made objects, compared with blackbody radiators, emit radiation more strongly at some wavelengths. Various types of data fusion of the spectral-spatial features contained in multiband imagery developed for detecting and recognizing low-contrast targets in clutter appear to have a common framework. A generalized hypothesis test on the observed data is formulated by partitioning the received bands into two groups. In one group, targets exhibit substantial coloring in their signatures but behave either like grey bodies or emit negligible radiant energy in the other group. This general observation about the data generalizes the data models used previously. A unified framework for these problems, which utilizes a maximum likelihood ratio approach to detection, is presented. Within this framework, a performance evaluation and a comparison of the various types of multiband detectors are conducted by finding the gain of the SNR needed for detection as well as the gain required for separability between the target classes used for recognition. Certain multiband detectors become special cases in this framework. The incremental gains in SNR and separability obtained by using what are called target-feature bands plus clutter-reference bands are studied. Certain essential parameters are defined that effect the gains in SNR and target separability

Published in:

Image Processing, IEEE Transactions on  (Volume:6 ,  Issue: 1 )