Cart (Loading....) | Create Account
Close category search window
 

Harmonic Power Flow Studies, Part I???Formulation and Solution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xia, Daozhi ; Xian Jiaotong University, Xian, Peoples Republic of China ; Heydt, G.T.

The conventional Newton-Raphson power flow study has been reformulated to permit the inclusion of nonlinear loads. These loads give rise to harmonic signals which propagate throughout the power system. The reformulation is based on the reduction to zero of the mismatch active power and reactive voltamperes, the imbalance current at harmonic frequencies, and the mismatch apparent Voltamperes. Conclusions on the existence of positive, negative, and zero sequence signals are made for harmonic frequencies. The harmonic power flow study formulation is illustrated for a three phase full wave bridge rectifier. A companion paper presents a discussion of the actual computer implementation and several practical examples.

Published in:

Power Engineering Review, IEEE  (Volume:PER-2 ,  Issue: 6 )

Date of Publication:

June 1982

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.