By Topic

Gabor wavelet representation for 3-D object recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xing Wu ; Coll. of Eng., California Univ., Riverside, CA, USA ; Bhanu, B.

This paper presents a model-based object recognition approach that uses a Gabor wavelet representation. The key idea is to use magnitude, phase, and frequency measures of the Gabor wavelet representation in an innovative flexible matching approach that can provide robust recognition. The Gabor grid, a topology-preserving map, efficiently encodes both signal energy and structural information of an object in a sparse multiresolution representation. The Gabor grid subsamples the Gabor wavelet decomposition of an object model and is deformed to allow the indexed object model match with similar representation obtained using image data. Flexible matching between the model and the image minimizes a cost function based on local similarity and geometric distortion of the Gabor grid. Grid erosion and repairing is performed whenever a collapsed grid, due to object occlusion, is detected. The results on infrared imagery are presented, where objects undergo rotation, translation, scale, occlusion, and aspect variations under changing environmental conditions

Published in:

Image Processing, IEEE Transactions on  (Volume:6 ,  Issue: 1 )