By Topic

Multiscale segmentation and anomaly enhancement of SAR imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
C. H. Fosgate ; Lab. for Inf. & Decision Syst., MIT, Cambridge, MA, USA ; H. Krim ; W. W. Irving ; W. C. Karl
more authors

We present efficient multiscale approaches to the segmentation of natural clutter, specifically grass and forest, and to the enhancement of anomalies in synthetic aperture radar (SAR) imagery. The methods we propose exploit the coherent nature of SAR sensors. In particular, they take advantage of the characteristic statistical differences in imagery of different terrain types, as a function of scale, due to radar speckle. We employ a class of multiscale stochastic processes that provide a powerful framework for describing random processes and fields that evolve in scale. We build models representative of each category of terrain of interest (i.e., grass and forest) and employ them in directing decisions on pixel classification, segmentation, and anomalous behaviour. The scale-autoregressive nature of our models allows extremely efficient calculation of likelihoods for different terrain classifications over windows of SAR imagery. We subsequently use these likelihoods as the basis for both image pixel classification and grass-forest boundary estimation. In addition, anomaly enhancement is possible with minimal additional computation. Specifically, the residuals produced by our models in predicting SAR imagery from coarser scale images are theoretically uncorrelated. As a result, potentially anomalous pixels and regions are enhanced and pinpointed by noting regions whose residuals display a high level of correlation throughout scale. We evaluate the performance of our techniques through testing on 0.3-m resolution SAR data gathered with Lincoln Laboratory's millimeter-wave SAR

Published in:

IEEE Transactions on Image Processing  (Volume:6 ,  Issue: 1 )