By Topic

An Extension of the Standard Mixture Model for Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nguyen Nguyen ; Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada ; Q. M. Jonathan Wu ; Siddhant Ahuja

Standard Gaussian mixture modeling (GMM) is a well-known method for image segmentation. However, the pixels themselves are considered independent of each other, making the segmentation result sensitive to noise. To reduce the sensitivity of the segmented result with respect to noise, Markov random field (MRF) models provide a powerful way to account for spatial dependences between image pixels. However, their main drawback is that they are computationally expensive to implement, and require large numbers of parameters. Based on these considerations, we propose an extension of the standard GMM for image segmentation, which utilizes a novel approach to incorporate the spatial relationships between neighboring pixels into the standard GMM. The proposed model is easy to implement and compared with MRF models, requires lesser number of parameters. We also propose a new method to estimate the model parameters in order to minimize the higher bound on the data negative log-likelihood, based on the gradient method. Experimental results obtained on noisy synthetic and real world grayscale images demonstrate the robustness, accuracy and effectiveness of the proposed model in image segmentation, as compared to other methods based on standard GMM and MRF models.

Published in:

IEEE Transactions on Neural Networks  (Volume:21 ,  Issue: 8 )