Cart (Loading....) | Create Account
Close category search window
 

UV Sensor Based on Photomechanically Functional Polymer-Coated FBG

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hyun-Kyoung Kim ; Dept. Polymer Sci. & Eng., Chosun Univ., Gwangju, South Korea ; Woojin Shin ; Tae-Jung Ahn

A simple ultraviolet (UV) sensor based on a photomechanical responsible material (azobenzene moiety) and a typical fiber Bragg grating (FBG) has been proposed and demonstrated for the first time. This sensing device, called the azobenzene-coated FBG sensor, can easily measure the UV light intensity by determination of its center wavelength shift which results from the photoisomerization of the azobenzene moieties. We show that the peak wavelength can be rapidly shifted up to 0.6 nm because of the photomechanical stretching effect of the azobenzene-coated FBG. The strain applied to the FBG under a UV intensity of 208 mW/cm2 was estimated to be 0.054%. We have also confirmed the linearity and stability of our proposed UV sensor.

Published in:

Photonics Technology Letters, IEEE  (Volume:22 ,  Issue: 19 )

Date of Publication:

Oct.1, 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.