By Topic

A Collaborative Recommender System Based on Space-Time Similarities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The Internet of Things (IoT) concept promises a world of networked and interconnected devices that provides relevant content to users. Recommender systems can find relevant content for users in IoT environments, offering a user-adapted personalized experience. Collaboration-based recommenders in IoT environments rely on user-to-object, space-time interaction patterns. This extension of that idea takes into account user location and interaction time to recommend scattered, pervasive context-embedded networked objects. The authors compare their proposed system to memory-based collaborative methods in which user similarity is based on the ratings of previously rated items. Their proof-of-concept implementation was used in a real-world scenario involving 15 students interacting with 75 objects at Carlos III University of Madrid.

Published in:

IEEE Pervasive Computing  (Volume:9 ,  Issue: 3 )