By Topic

Integrating multiple scoring functions to improve protein loop structure conformation space sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yaohang Li ; Department of Computer Science, North Carolina A&T State University, Greensboro, 27411 USA ; Ionel Rata ; Eric Jakobsson

In this article, we present a new protein structure modeling approach based on multi-scoring functions sampling. The rationale is to integrate multiple carefully-selected physics-or knowledge-based scoring functions to tolerate insensitivity and inaccuracy existing in an individual scoring function so as to improve protein structure modeling accuracy. We apply the multi-scoring function sampling approach to protein loop backbone structure modeling. Our computational results show that sampling the scoring function space of a physics-based soft-sphere potential function and a knowledge-based scoring function based on pairwise atoms distance has led to resolution improvement in the predicted decoy populations in a set of 12-residue benchmark loop targets.

Published in:

Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2010 IEEE Symposium on

Date of Conference:

2-5 May 2010