By Topic

Current-mode operational transconductance amplifier-capacitor biquad filter structures based on Tarmy-Ghausi Active-RC filter and second-order digital all-pass filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. V. Kamat ; Department of Electrical and Computer Engineering, Manipal Institute of Technology ; P. V. Ananda Mohan ; K. Gopalakrishna Prabhu

The Tarmy-Ghausi (TG) active resistor-capacitor (RC) filters using op-amps and its modification by Moschytz are well known to active RC filter designers. These use first-order all-pass networks in a negative feedback loop. New current-mode universal operational transconductance amplifier-capacitor (OTA-C) biquad filters based on the TG active RC filter are considered here. These are based on a recently proposed OTA-C based first-order all-pass network. Three different feedback arrangements are investigated in the proposed filter structure so as to reduce the pole-Q sensitivity. The proposed biquad filters are shown to implement all different types of filters like low-pass, high-pass, band-pass, symmetric notch, all-pass, low-pass notch and high-pass notch. The synthesis of the general biquad is carried out in a novel way by invoking the analogy with direct-form digital filter structures. The special case of all-pass filter realisation derived from the proposed universal filter needs additional hardware for realising the feed-forward coefficients. Hence alternative OTA-C based all-pass filter implementations based on Mitra-Hirano and Gray-Markel second-order digital filter structures are derived in which the coefficients that are used to realise the denominator are shared in the realisation of numerator also. All the proposed circuits are compared with the other structures available in the literature. The simulation results of the proposed circuits are also presented.

Published in:

IET Circuits, Devices & Systems  (Volume:4 ,  Issue: 4 )