By Topic

Sub-Hexagonal Phase Correlation for Motion Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Argyriou, V. ; Dept. of Comput., Inf. Syst. & Math., Kingston Univ., London, UK

We present a novel frequency-domain motion estimation technique, which operates on hexagonal images and employs the hexagonal Fourier transform. Our method involves image sampling on a hexagonal lattice followed by a normalised hexagonal cross-correlation in the frequency domain. The term subpixel (or subcell) is defined on a hexagonal grid in order to achieve floating point registration. Experiments using both artificially induced motion and actual motion demonstrate that the proposed method outperforms the state-of-the-art in frequency-domain motion estimation operating on a square lattice, in the shape of phase correlation, in terms of subpixel accuracy for a range of test material and motion scenarios.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 1 )