By Topic

Environment-independent continuous speech recognition using neural networks and hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dong-Suk Yuk ; CAIP Center, Rutgers Univ., Piscataway, NJ, USA ; ChiWei Che ; Limin Jin ; Qiguang Lin

Environment-independent continuous speech recognition is important for the successful development of speech recognizers in real world applications. Linear compensation methods do not work well if the mismatches between training; and testing environments are not linear. In this paper, a neural network compensation technique is explored to mitigate the distortion resulting from additive noise, distant-talking, or telephone channels. The advantage of the neural network compensation method is that retraining of a speech recognizer for each particular application is avoided. Furthermore, since neural networks are trained to transform distorted speech feature vectors to those corresponding to clean speech, it may outperform a retrained speech recognizer trained on distorted speech. Three experiments are conducted to evaluate the capability of the neural network compensation method; recognition of additive noisy speech, distant-talking speech, and telephone speech

Published in:

Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on  (Volume:6 )

Date of Conference:

7-10 May 1996