By Topic

TrustVisor: Efficient TCB Reduction and Attestation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
McCune, J.M. ; CyLab, Carnegie Mellon Univ., Pittsburgh, PA, USA ; Yanlin Li ; Ning Qu ; Zongwei Zhou
more authors

An important security challenge is to protect the execution of security-sensitive code on legacy systems from malware that may infect the OS, applications, or system devices. Prior work experienced a tradeoff between the level of security achieved and efficiency. In this work, we leverage the features of modern processors from AMD and Intel to overcome the tradeoff to simultaneously achieve a high level of security and high performance. We present TrustVisor, a special-purpose hypervisor that provides code integrity as well as data integrity and secrecy for selected portions of an application. TrustVisor achieves a high level of security, first because it can protect sensitive code at a very fine granularity, and second because it has a very small code base (only around 6K lines of code) that makes verification feasible. TrustVisor can also attest the existence of isolated execution to an external entity. We have implemented TrustVisor to protect security-sensitive code blocks while imposing less than 7% overhead on the legacy OS and its applications in the common case.

Published in:

Security and Privacy (SP), 2010 IEEE Symposium on

Date of Conference:

16-19 May 2010