By Topic

Designing Efficient Many-Core Parallel Algorithms for All-Pairs Shortest-Paths Using CUDA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Quoc-Nam Tran ; Lamar Univ., Beaumont, TX, USA

Finding the all-pairs shortest-paths on a large graph is a fundamental problem in many practical applications such as bioinformatics, internet node traffic and network routing. In this paper, we present the designs of two efficient parallel algorithms for many-core GPUs using CUDA. Our algorithms expose substantial fine-grained parallelism while maintaining minimal global communication. By using the global scope of the GPU's global memory, coalescing the global memory reads and writes, and avoiding on-chip shared memory bank conflicts, we are able to achieve a large performance benefit with a speed-up of 2,500x on a desktop computer in comparison with a single core program. Our algorithms are scalable, which can handle graphs with size larger than the memory available on the GPUs and when multiple GPUs are added into the system.

Published in:

Information Technology: New Generations (ITNG), 2010 Seventh International Conference on

Date of Conference:

12-14 April 2010