Cart (Loading....) | Create Account
Close category search window
 

Efficiently Learning a Detection Cascade With Sparse Eigenvectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chunhua Shen ; Canberra Res. Lab., NICTA, Canberra, ACT, Australia ; Paisitkriangkrai, S. ; Zhang, Jian

Real-time object detection has many computer vision applications. Since Viola and Jones proposed the first real-time AdaBoost based face detection system, much effort has been spent on improving the boosting method. In this work, we first show that feature selection methods other than boosting can also be used for training an efficient object detector. In particular, we introduce greedy sparse linear discriminant analysis (GSLDA) for its conceptual simplicity and computational efficiency; and slightly better detection performance is achieved compared with . Moreover, we propose a new technique, termed boosted greedy sparse linear discriminant analysis (BGSLDA), to efficiently train a detection cascade. BGSLDA exploits the sample reweighting property of boosting and the class-separability criterion of GSLDA. Experiments in the domain of highly skewed data distributions (e.g., face detection) demonstrate that classifiers trained with the proposed BGSLDA outperforms AdaBoost and its variants. This finding provides a significant opportunity to argue that AdaBoost and similar approaches are not the only methods that can achieve high detection results for real-time object detection.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.