Cart (Loading....) | Create Account
Close category search window
 

Yield Enhancement by Bad-Die Recycling and Stacking With Though-Silicon Vias

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

3-D integration provides a means to overcome the difficulties in design and manufacturing of system-on-chip (SOC) and memory products. Introducing a short vertical interconnect, called through-silicon via (TSV), makes it feasible to repair and recycle bad dies by stacking. We propose a method to accomplish this using a dual-TSV hardwired switch (DTHS) in which the via-hole location is programmable. With the DTHS, we activate a spare and establish inter-die routing. The spare is nothing but a good part in another bad die. To be 3-D reparable, the design is partitioned into disjoint parts. The effort for the modification is minor in view of that a typical SOC is readily composed of modules with predefined functions and supply voltages. The DTHS is used: 1) to shut off power connections of both failed and unused parts; 2) to disconnect their signal paths; and 3) to redirect them to the selected good parts in the stacked dies. Despite the speed is degraded due to the extra load incurred by the DTHS, our simulation shows that the increase in delay time can be limited below 100 ps with an over-designed buffer which occupies 0.8% of the area of a 30 μm TSV, using a 65-nm CMOS process. The performance degradation turns out to be a necessary evil, since the increased height of the die stack leads to a thermal conductivity poorer than its 2-D counterpart. The 3-D patch die helps to shorten time-to-market and turn the irreparable dies profitable.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 8 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.