By Topic

An Adaptive Mixed Reality Training System for Stroke Rehabilitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Duff, M. ; Sch. of Biol. & Health Syst. Eng., Arizona State Univ., Tempe, AZ, USA ; Yinpeng Chen ; Attygalle, S. ; Herman, J.
more authors

This paper presents a novel mixed reality rehabilitation system used to help improve the reaching movements of people who have hemiparesis from stroke. The system provides real-time, multimodal, customizable, and adaptive feedback generated from the movement patterns of the subject's affected arm and torso during reaching to grasp. The feedback is provided via innovative visual and musical forms that present a stimulating, enriched environment in which to train the subjects and promote multimodal sensory-motor integration. A pilot study was conducted to test the system function, adaptation protocol and its feasibility for stroke rehabilitation. Three chronic stroke survivors underwent training using our system for six 75-min sessions over two weeks. After this relatively short time, all three subjects showed significant improvements in the movement parameters that were targeted during training. Improvements included faster and smoother reaches, increased joint coordination and reduced compensatory use of the torso and shoulder. The system was accepted by the subjects and shows promise as a useful tool for physical and occupational therapists to enhance stroke rehabilitation.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 5 )