By Topic

Decomposing Workload Bursts for Efficient Storage Resource Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lanyue Lu ; Rice University, Houston ; Peter J. Varman ; Kshitij Doshi

The growing popularity of hosted storage services and shared storage infrastructure in data centers is driving the recent interest in resource management and QoS in storage systems. The bursty nature of storage workloads raises significant performance and provisioning challenges, leading to increased resource requirements, management costs, and energy consumption. We present a novel workload shaping framework to handle bursty workloads, where the arrival stream is dynamically decomposed to isolate its bursts, and then rescheduled to exploit available slack. We show how decomposition reduces the server capacity requirements and power consumption significantly, while affecting QoS guarantees minimally. We present an optimal decomposition algorithm RTT and a recombination algorithm Miser, and show the benefits of the approach by evaluating the performance of several storage workloads using both simulation and Linux implementation.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:22 ,  Issue: 5 )