By Topic

Unsupervised multilingual concept discovery from daily online news extracts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jenq-Haur Wang ; National Taipei University of Technology, Taiwan

Web syndication technologies help us easily aggregate daily news from diverse sources. However, the huge amount of information makes us more difficult to read let alone digest and focus on the most important events. Therefore, we need an efficient way of news extraction and mining. In this paper, we propose an unsupervised approach to multilingual concept discovery from daily online news extracts. First, key terms are extracted statistically from short news extracts. Second, similar term candidates are grouped into concrete concepts with unsupervised term clustering methods. Our goal is automatic news processing with minimum resources, which requires no training in advance. The experimental results show the potential of the proposed approach in efficiency and effectiveness. Further investigation is needed to study the cross-lingual relation between extracted concepts.

Published in:

Intelligence and Security Informatics (ISI), 2010 IEEE International Conference on

Date of Conference:

23-26 May 2010