By Topic

Spectral partitioning works: planar graphs and finite element meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Spielmat, D.A. ; Dept. of Math., MIT, Cambridge, MA, USA ; Shang-Hua Teng

Spectral partitioning methods use the Fiedler vector-the eigenvector of the second-smallest eigenvalue of the Laplacian matrix-to find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on bounded-degree planar graphs and finite element meshes-the classes of graphs to which they are usually applied. While active spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O(√n) for bounded-degree planar graphs and two-dimensional meshes and O(n1d/) for well-shaped d-dimensional meshes. The heart of our analysis is an upper bound on the second-smallest eigenvalues of the Laplacian matrices of these graphs: we prove a bound of O(1/n) for bounded-degree planar graphs and O(1/n2d/) for well-shaped d-dimensional meshes

Published in:

Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on

Date of Conference:

14-16 Oct 1996