By Topic

A Hybrid Multiobjective Evolutionary Approach for Improving the Performance of Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Flávio V. C. Martins ; Department of Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil ; Eduardo G. Carrano ; Elizabeth F. Wanner ; Ricardo H. C. Takahashi
more authors

The increasing in the demand for Wireless Sensor Networks (WSNs) has intensified studies which are dedicated to obtain more energy-efficient solutions, since the energy storage limitation is critical in those systems. Additionally, there are other aspects which usually must be ensured in order to get an acceptable performance of WSNs, such as area coverage and network connectivity. This paper proposes a procedure for enhancing the performance of WSNs: a multiobjective hybrid optimization algorithm is employed for solving the Dynamic Coverage and Connectivity Problem (DCCP) in flat WSNs subjected to node failures. This method combines a multiobjective global on-demand algorithm (MGoDA), which improves the current DCCP solution using a Genetic Algorithm, with a local on line algorithm (LoA), which is intended to restore the network coverage soon after any failure. The proposed approach is compared with an Integer Linear Programming (ILP)-based approach and a similar mono-objective approach with regard to coverage, network lifetime and required running time for achieving the optimal solution provided by each method. Results achieved for a test instance show that the hybrid approach presented can improve the performance of the WSN obtaining good solutions with a considerably smaller computational time than ILP. The multiobjective approach still provides a feasible method for extending WSNs lifetime with slight decreasing in the network mean coverage.

Published in:

IEEE Sensors Journal  (Volume:11 ,  Issue: 3 )