Cart (Loading....) | Create Account
Close category search window
 

Oblivious algorithms for multicores and network of processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chowdhury, R.A. ; Dept. of Comput. Sci., Univ. of Texas, Austin, TX, USA ; Silvestri, F. ; Blakeley, B. ; Ramachandran, V.

We address the design of algorithms for multicores that are oblivious to machine parameters. We propose HM, a multicore model consisting of a parallel shared-memory machine with hierarchical multi-level caching, and we introduce a multicore-oblivious (MO) approach to algorithms and schedulers for HM. An MO algorithm is specified with no mention of any machine parameters, such as the number of cores, number of cache levels, cache sizes and block lengths. However, it is equipped with a small set of instructions that can be used to provide hints to the run-time scheduler on how to schedule parallel tasks. We present efficient MO algorithms for several fundamental problems including matrix transposition, FFT, sorting, the Gaussian Elimination Paradigm, list ranking, and connected components. The notion of an MO algorithm is complementary to that of a network-oblivious (NO) algorithm, recently introduced by Bilardi et al. for parallel distributed-memory machines where processors communicate point-to-point. We show that several of our MO algorithms translate into efficient NO algorithms, adding to the body of known efficient NO algorithms.

Published in:

Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on

Date of Conference:

19-23 April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.