By Topic

Fast Software Rejuvenation of Virtual Machine Monitors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kourai, K. ; Dept. of Creative Inf., Kyushu Inst. of Technol., Fukuoka, Japan ; Chiba, S.

As server consolidation using virtual machines (VMs) is carried out, software aging of virtual machine monitors (VMMs) is becoming critical. Since a VMM is fundamental software for running VMs, its performance degradation or crash failure affects all VMs running on top of it. To counteract such software aging, a proactive technique called software rejuvenation has been proposed. A simple example of rejuvenation is to reboot a VMM. However, simply rebooting a VMM is undesirable because that needs rebooting operating systems on all VMs. In this paper, we propose a new technique for fast rejuvenation of VMMs called the warm-VM reboot. The warm-VM reboot enables efficiently rebooting only a VMM by suspending and resuming VMs without saving the memory images to persistent storage. To achieve this, we have developed two mechanisms: on-memory suspend/resume of VMs and quick reload of a VMM. Compared with a normal reboot, the warm-VM reboot reduced the downtime by 74 percent at maximum. It also prevented the performance degradation due to cache misses after the reboot, which was 52 percent in case of a normal reboot. In a cluster environment, the warm-VM reboot achieved higher total throughput than the system using VM migration and a normal reboot.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:8 ,  Issue: 6 )