Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Integrated Rule-Based Learning and Inference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hatzilygeroudis, I. ; Dept. of Comput. Eng. & Inf., Univ. of Patras, Patras, Greece ; Prentzas, J.

Neurules are a kind of integrated rules integrating neurocomputing and production rules. Each neurule is represented as an adaline unit. Thus, the corresponding neurule base consists of a number of autonomous adaline units (neurules). In this paper, we present the construction process and the inference mechanism of neurules and explore their generalization capabilities. The construction process, which also implements corresponding learning algorithm, creates neurules from a given empirical data set. The inference mechanism of neurules is integrated in its nature; it combines neurocomputing with symbolic processes. It is also interactive, i.e., it interacts with the user asking him/her to provide values for some variables necessary to carry on inference. As shown via experiments, the neurules' integrated inference mechanism is more efficient than the inference mechanism used in connectionist expert systems. Furthermore, neurules generalize much better than their constituent neural component (adaline unit) and are comparable to the backpropagation neural net (BPNN).

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 11 )