By Topic

Digital Coherent Optical Receivers: Algorithms and Subsystems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Savory, S.J. ; Dept. of Electron. & Electr. Eng., Univ. Coll. London, London, UK

Digital coherent receivers have caused a revolution in the design of optical transmission systems, due to the subsystems and algorithms embedded within such a receiver. After giving a high-level overview of the subsystems, the optical front end, the analog-to-digital converter (ADC) and the digital signal processing (DSP) algorithms, which relax the tolerances on these subsystems are discussed. Attention is then turned to the compensation of transmission impairments, both static and dynamic. The discussion of dynamic-channel equalization, which forms a significant part of the paper, includes a theoretical analysis of the dual-polarization constant modulus algorithm, where the control surfaces several different equalizer algorithms are derived, including the constant modulus, decision-directed, trained, and the radially directed equalizer for both polarization division multiplexed quadriphase shift keyed (PDM-QPSK) and 16 level quadrature amplitude modulation (PDM-16-QAM). Synchronization algorithms employed to recover the timing and carrier phase information are then examined, after which the data may be recovered. The paper concludes with a discussion of the challenges for future coherent optical transmission systems.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:16 ,  Issue: 5 )