By Topic

A Node-failure-resilient Anonymous Communication Protocol through Commutative Path Hopping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fengjun Li ; Coll. of IST, Pennsylvania State Univ., University Park, PA, USA ; Bo Luo ; Peng Liu ; Chao-Hsien Chu

With rising concerns on user privacy over the Internet, anonymous communication systems that hide the identity of a participant from its partner or third parties are highly desired. Existing approaches either rely on a relative small set of pre-selected relay servers to redirect the messages, or use structured peer-to-peer systems to multicast messages among a set of relay groups. The pre-selection approaches provide good anonymity, but suffer from node failures and scalability problem. The peer-to-peer approaches are subject to node churns and high maintenance overhead, which are the intrinsic problems of P2P systems. In this paper, we present CAT, a node-failure-resilient anonymous communication protocol. In this protocol, relay servers are randomly assigned to relay groups. The initiator of a connection selects a set of relay groups instead of relay servers to set up anonymous paths. A valid path consists of relay servers, one from each selected relay group. The initiator explores valid anonymous paths via a probing process. Since the relative positions of relay servers in the path are commutative, there exist multiple anonymous yet commutative paths, which form an anonymous tunnel. When a connection encounters a node failure, it quickly switches to a nearest backup path in the tunnel through "path hopping", without tampering the initiator or renegotiating the keys. Hence, the protocol is resilient to node failures. We also show that the protocol provides good anonymity even when facing types of active and passive attacks. Finally, the operating cost of CAT is analyzed and shown to be similar to other node-based anonymous communication protocols.

Published in:

INFOCOM, 2010 Proceedings IEEE

Date of Conference:

14-19 March 2010