Cart (Loading....) | Create Account
Close category search window

Actively Controlled Manipulation of a Magnetic Microbead Using Quadrupole Magnetic Tweezers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhipeng Zhang ; Dept. of Mech. Eng., Ohio State Univ., Columbus, OH, USA ; Yanan Huang ; Menq, C.-H.

This paper presents the theoretical analysis and experimental investigation of actively controlled manipulation of a magnetic microbead using quadrupole magnetic tweezers. Bead dynamics, magnetic actuation, and visual measurement are analyzed. A feedback control law is developed and implemented to stabilize and steer the motion of the magnetic microbead. It is developed in two steps. First, an inverse model, which is associated with a lumped-parameter analytical force model, is derived to enable feedback linearization. Second, linear controllers are designed to achieve motion stabilization and manipulation of the magnetic microbead. A proportional-gain controller along with feedback linearization is implemented to establish a stable trapping of the magnetic bead to facilitate system calibration. Experiments are then performed to validate the derived inverse force model and theoretical analysis. In addition, a minimum-variance controller is designed and employed to reduce the variance of the bead's Brownian motion. The control performance in terms of variance reduction, nanostepping, and large-range steering is then experimentally demonstrated.

Published in:

Robotics, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

June 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.