By Topic

On the Origin of Hole Valence Band Injection on GIFBE in PD SOI n-MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Chih-Hao Dai ; Department of Photonics , National Sun Yat-Sen University, Kaohsiung, Taiwan ; Ting-Chang Chang ; Ann-Kuo Chu ; Yuan-Jui Kuo
more authors

This letter systematically investigates the mechanism of gate-induced floating-body effect (GIFBE) in advanced partially depleted silicon-on-insulator metal-oxide-semiconductor field-effect transistors. Based on different operation conditions, we found that the hole current collected by the body terminal is strongly dependent on electrons in the inversion layer under a source/drain ground. This implies that GIFBE can be attributed to anode hole injection (AHI) rather than the widely accepted mechanism of electron valence band tunneling. Moreover, GIFBE was also analyzed as a function of temperature. The results provide further evidence that the accumulation of holes in the body results from the AHI-induced direct tunneling current from the gate.

Published in:

IEEE Electron Device Letters  (Volume:31 ,  Issue: 6 )