By Topic

Improved Hurricane Ocean Vector Winds Using SeaWinds Active/Passive Retrievals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Peth Laupattarakasem ; School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA ; W. Linwood Jones ; Christopher C. Hennon ; John R. Allard
more authors

The SeaWinds scatterometer, onboard the QuikSCAT satellite, infers global ocean vector winds (OVWs); however, for a number of reasons, these measurements in hurricanes are significantly degraded. This paper presents an improved hurricane OVW retrieval approach, known as Q-Winds, which is derived from combined SeaWinds active and passive measurements. In this technique, the effects of rain are implicitly included in a new geophysical model function, which relates oceanic brightness temperature and radar backscatter measurements (at the top of the atmosphere) to the surface wind vector under both clear sky and in the presence of light to moderate rain. This approach extends the useful wind speed measurement range for tropical cyclones beyond that exhibited by the standard SeaWinds Project Level-2B (L2B) 12.5-km wind vector algorithm. A description of the Q-Winds algorithm is given, and examples of OVW retrievals are presented for the Q-Winds and L2B 12.5-km algorithms for ten hurricane overpasses in 2003-2008. These data are also compared to independent surface wind vector estimates from the National Oceanic and Atmospheric Administration Hurricane Research Division's objective hurricane surface wind analysis technique known as H*Wind. These comparisons suggest that the Q-Winds OVW product agrees better with independently derived H^ Wind analysis winds than does the conventional L2B OVW product.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:48 ,  Issue: 7 )