By Topic

A general framework for MIMO transceiver design with imperfect CSI and transmit correlation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Minhua Ding ; Hong Kong University of Science and Technology, Hong Kong, P. R. China ; Steven D. Blostein ; Wai Ho Mow ; Constantin Siriteanu

Assuming perfect channel state information (CSI), linear precoding/decoding for multiple-input multiple-output (MIMO) systems has been considered in the literature under various performance criteria, such as minimum total mean-square error (MSE), maximum mutual information, and minimum average bit error rate (BER). It has been shown that these criteria belong to a set of reasonable Schur-concave or Schur-convex objective functions of the diagonal entries of the system mean-square error (MSE) matrix. In this paper, assuming only the knowledge of channel mean and transmit correlation at both ends, a general theoretical framework is presented to derive the optimum precoder and decoder for MIMO systems using these objective functions. It is shown that for all these objective functions the optimum transceivers share a similar structure. Compared to the case with perfect CSI, a linear filter is added to both ends to balance the suppression of channel noise and the additional noise induced from channel estimation error. Simulation results are provided.

Published in:

2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications

Date of Conference:

13-16 Sept. 2009