By Topic

Troubleshooting of 3G LTE mobility parameters using iterative statistical model refinement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tiwana, M.I. ; Orange Labs., RESA/NET, Issy-Les-Moulineaux, France ; Sayrac, B. ; Altman, Z. ; Chahed, T.

This paper presents a new troubleshooting methodology for 3G Long Term Evolution (LTE) networks based on a closed-form expression between Radio Resource Management (RRM) and Key Performance Indicator (KPI) parameters, using statistical learning. This methodology aims at locally optimising the RRM parameters of the cells with poor performance in an iterative manner. The optimization engine uses the closed-form relationship to calculate the optimized RRM parameters for these cells. The main advantage of this methodolgy is the small number of iterations required to achieve convergence and the QoS objective. A troubleshooting application scenario involving mobility in LTE networks is considered. Numerical simulations illustrate the benefits of our proposed scheme.

Published in:

Wireless Days (WD), 2009 2nd IFIP

Date of Conference:

15-17 Dec. 2009