Cart (Loading....) | Create Account
Close category search window
 

Air Force Research Laboratory high power electric propulsion technology development

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Brown, D.L. ; Spacecraft Branch, Air Force Res. Lab. (AFRL/RZSS), Edwards AFB, CA, USA ; Beal, B.E. ; Haas, J.M.

Space solar power generation systems have a significant impact on Electric Propulsion (EP) technology development.1,2,3 Recent advances in solar cell, deployment, and concentrator hardware have led to significant reductions in component mass, thereby decreasing power generation system specific mass. Combined with maneuvering requirements for Air Force and DoD missions of interest, propulsive requirements emerge that provide direction for technology investments. Projections for near- to mid-term propulsion capabilities are presented indicating the need for thrusters capable of processing larger amounts of power (100 - 200 kW), operating at relatively moderate specific impulse (2000 - 6000 seconds) and high efficiency (> 60%), and having low propulsion system mass (< 1 kg/kW). Two technology areas are identified and discussed in the context of the above thruster constraints. Concentric channel Hall thrusters are an extension of a mature technology, offering operation over expanded power levels and lower propulsion system specific mass at state-of-the-art (SOTA) efficiencies. Field Reverse Configuration (FRC) thrusters are a specific type of pulsed inductive accelerator that have the potential to operate up to MW power levels, at propulsion system specific masses even lower than concentric channel Hall thrusters, and on a wider range of propellants. However, FRCs are currently less mature than the Hall thruster variants. Comparisons of candidate technologies are evaluated with VASIMR, a well publicized high power EP device currently under development.

Published in:

Aerospace Conference, 2010 IEEE

Date of Conference:

6-13 March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.