By Topic

Prospect of High-Field MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hitoshi Wada ; National Institute for Materials Science, Tsukuba, Japan ; Masaki Sekino ; Hiroyuki Ohsaki ; Tatsuhiro Hisatsune
more authors

High-Field MRI provides high resolutions, well-defined chemical shift spectra and large data acquisition rates, and may bring about a paradigm shift in medicine through the in-vivo observation of metabolism. An 11.7 T whole body MRI magnet, for example, should be able to observe metabolic reactions occurring in a human body in addition to producing very precise images of body structures. At this field 13C-NMR and biochemical reactions of organic molecules can be detected and analyzed in-situ. Then, organs, tissues, vessels and biochemical processes responsible for irregularities in question will be identified. However, an 11.7 T MRI magnet with a bore diameter of 900 mm is a big challenge to the present magnet technology. Field strengths, magnet sizes and superconducting materials to be needed for future high-field MRI are described.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:20 ,  Issue: 3 )