By Topic

Effect of respiration on the solutions of forward and inverse electrocardiographic problems - a simulation study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiang, Y. ; Karlsruhe Inst. of Technol. (KIT), Karlsruhe, Germany ; Meng, Y. ; Farina, D. ; Doessel, O.

The forward problem of electrocardiography aims at obtaining a better understanding of cardiac electrophysiological activities, by means of computer modeling and simulation. Whereas, the inverse electrocardiographic problem provides a direct insight of electrical sources into the heart without interventional procedures. Nowadays, the forward and inverse problems are mostly solved in static models, which do not take into account heart motion and respiration. Besides heart motion, neglecting respiration may also lead to remarkable uncertainties in both forward and inverse solutions. In the present work a dynamic lung model is developed. With this model the effect of respiration on the forward and inverse solutions is studied.

Published in:

Computers in Cardiology, 2009

Date of Conference:

13-16 Sept. 2009