Cart (Loading....) | Create Account
Close category search window
 

RF Characterization and Analytical Modelling of Through Silicon Vias and Coplanar Waveguides for 3D Integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lamy, Y.P.R. ; NXP Semicond. Res., Eindhoven, Netherlands ; Jinesh, K.B. ; Roozeboom, Fred ; Gravesteijn, D.J.
more authors

High-aspect ratio (12.5) through silicon vias (TSV) made in a silicon interposer have been electrically characterized in the direct current (dc) and microwave regimes for 3D interconnect applications. The vias were micro-machined in silicon, insulated, and filled with copper employing a bottom-up copper electroplating technique in a “via-first” approach. DC via resistance measurements show good agreement with the theoretical expected value (~ 16 mΩ) . Radio-frequency (RF) measurements up to 50 GHz have been performed on coplanar waveguides located on the back-side of the wafers and connected to the front-side with TSVs. The S-parameters indicate clearly the beneficial impact of double sided ground planes of the RF signals. The via resistance extracted from impedance measurements is in good agreement with dc values, while the inductance (53 pH) and capacitance (2.4 pF) of the TSV are much lower than conventional wire bonding, which makes the use of TSV very promising for 3D integration. An advanced analytical model is proposed for the interconnect system with vias and lines and shows very good agreement with the experimental data with a limited number of fitting parameters. This work gives a proof of concept for high aspect ratio TSV manufacturing and new insights to improve 3D interconnect modeling for systems-in-package applications in the microwave regime.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:33 ,  Issue: 4 )

Date of Publication:

Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.