By Topic

Reliability study for high temperature stable conductive adhesives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wenkai Tao ; Key State Laboratory of New Displays and System Applications and SMIT Center, School of Automation and Mechanical Engineering, Shanghai University, 149 Yanchang Rd., 200072, China ; Si Chen ; Pär Berggren ; Johan Liu

With fast development of electronic packaging, the conductive adhesives were widely used in surface mount and chip interconnection. As an alternative to solder, it has many advantages, such as low processing temperature, less environment contamination and fine pitch capability. However, conductive adhesive joining technology also simultaneously faces a lot of challenges. The major problem of current conductive adhesives is easy to degrade during temperature and humidity aging. Therefore a high temperature stable matrix was developed for conductive adhesive fabrication. Based on this matrix, a kind of isotropic conductive adhesive (ICA) was fabricated in this work. The curing behavior of ICA was investigated by Differential Scanning Calorimeter (DSC). The properties such as glass transition temperature (Tg), storage modulus were detected by Dynamic Mechanical Analyzer (DMA). Thermogravimetric Analysis (TGA) was used to determine the decomposition behavior. The humidity test was subsequently carried out to evaluate moisture resistance of ICA. The electrical resistances of the ICA samples were measured by the multimeter. During humidity test, no obvious change of electrical resistance of ICA samples was observed.

Published in:

2010 International Symposium on Advanced Packaging Materials: Microtech (APM)

Date of Conference:

Feb. 28 2010-March 2 2010