By Topic

Estimating and Fusing Quality Factors for Iris Biometric Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kalka, N.D. ; Lane Dept. of Comput. Sci. & Electr. Eng., West Virginia Univ., Morgantown, WV, USA ; Jinyu Zuo ; Schmid, N.A. ; Cukic, B.

Iris recognition, the ability to recognize and distinguish individuals by their iris pattern, is one of the most reliable biometrics in terms of recognition and identification performance. However, the performance of these systems is affected by poor-quality imaging. In this paper, we extend iris quality assessment research by analyzing the effect of various quality factors such as defocus blur, off-angle, occlusion/specular reflection, lighting, and iris resolution on the performance of a traditional iris recognition system. We further design a fully automated iris image quality evaluation block that estimates defocus blur, motion blur, off-angle, occlusion, lighting, specular reflection, and pixel counts. First, each factor is estimated individually, and then, the second step fuses the estimated factors by using a Dempster-Shafer theory approach to evidential reasoning. The designed block is evaluated on three data sets: Institute of Automation, Chinese Academy of Sciences (CASIA) 3.0 interval subset, West Virginia University (WVU) non-ideal iris, and Iris Challenge Evaluation (ICE) 1.0 dataset made available by National Institute for Standards and Technology (NIST). Considerable improvement in recognition performance is demonstrated when removing poor-quality images selected by our quality metric. The upper bound on computational complexity required to evaluate the quality of a single image is O(n2 log n).

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:40 ,  Issue: 3 )
Biometrics Compendium, IEEE