Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

The Quantum and Classical Complexity of Translationally Invariant Tiling and Hamiltonian Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gottesman, D. ; Perimeter Inst. for Theor. Phys., Waterloo, ON, Canada ; Irani, S.

We study the complexity of a class of problems involving satisfying constraints which remain the same under translations in one or more spatial directions. In this paper, we show hardness of a classical tiling problem on an (N x N) 2-dimensional grid and a quantum problem involving finding the ground state energy of a 1-dimensional quantum system of N particles. In both cases, the only input is N, provided in binary. We show that the classical problem is NEXP-complete and the quantum problem is QMAEXP-complete. Thus, an algorithm for these problems that runs in time polynomial in N (exponential in the input size) would imply EXP = NEXP or BQEXP = QMAEXP, respectively. Although tiling in general is already known to be NEXP-complete, to our knowledge, all previous reductions require that either the set of tiles and their constraints or some varying boundary conditions be given as part of the input. In the problem considered here, these are fixed, constant-sized parameters of the problem. Instead, the problem instance is encoded solely in the size of the system.

Published in:

Foundations of Computer Science, 2009. FOCS '09. 50th Annual IEEE Symposium on

Date of Conference:

25-27 Oct. 2009