By Topic

Decomposing Coverings and the Planar Sensor Cover Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matt Gibson ; Dept. of Comput. Sci., Univ. of Iowa, Iowa City, IA, USA ; Kasturi Varadarajan

We show that a k-fold covering using translates of an arbitrary convex polygon can be decomposed into Omega(k) covers (using an efficient algorithm). We generalize this result to obtain a constant factor approximation to the sensor cover problem where the ranges of the sensors are translates of a given convex polygon. The crucial ingredient in this generalization is a constant factor approximation algorithm for a one-dimensional version of the sensor cover problem, called the Restricted Strip Cover (RSC) problem, where sensors are intervals of possibly different lengths. Our algorithm for RSC improves on the previous O(log log log n) approximation.

Published in:

Foundations of Computer Science, 2009. FOCS '09. 50th Annual IEEE Symposium on

Date of Conference:

25-27 Oct. 2009