Cart (Loading....) | Create Account
Close category search window

Non-uniform power access in large caches with low-swing wires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Modern processors dedicate more than half their chip area to large L2 and L3 caches and these caches contribute significantly to the total processor power. A large cache is typically split into multiple banks and these banks are either connected through a bus (uniform cache access - UCA) or an on-chip network (non-uniform cache access - NUCA). Irrespective of the cache model (NUCA or UCA), the complex interconnects that must be navigated within large caches are found to be the dominant part of cache access power. While there have been a number of proposals to minimize energy consumption in the inter-bank network, very little attention has been paid to the optimization of intra-bank network power that contributes more than 50% of the total cache dynamic power in large cache banks. In this work we study various mechanisms that introduce low-swing wires inside cache banks as energy saving measures. We propose a novel non-uniform power access design, which when coupled with simple architectural mechanisms, provides the best power-performance tradeoff. The proposed mechanisms reduce cache bank energy by 42% while incurring a minor 1% drop in performance.

Published in:

High Performance Computing (HiPC), 2009 International Conference on

Date of Conference:

16-19 Dec. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.