Cart (Loading....) | Create Account
Close category search window
 

Fingerprint Reconstruction: From Minutiae to Phase

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jianjiang Feng ; Dept. of Autom., Tsinghua Univ., Beijing, China ; Jain, A.K.

Fingerprint matching systems generally use four types of representation schemes: grayscale image, phase image, skeleton image, and minutiae, among which minutiae-based representation is the most widely adopted one. The compactness of minutiae representation has created an impression that the minutiae template does not contain sufficient information to allow the reconstruction of the original grayscale fingerprint image. This belief has now been shown to be false; several algorithms have been proposed that can reconstruct fingerprint images from minutiae templates. These techniques try to either reconstruct the skeleton image, which is then converted into the grayscale image, or reconstruct the grayscale image directly from the minutiae template. However, they have a common drawback: Many spurious minutiae not included in the original minutiae template are generated in the reconstructed image. Moreover, some of these reconstruction techniques can only generate a partial fingerprint. In this paper, a novel fingerprint reconstruction algorithm is proposed to reconstruct the phase image, which is then converted into the grayscale image. The proposed reconstruction algorithm not only gives the whole fingerprint, but the reconstructed fingerprint contains very few spurious minutiae. Specifically, a fingerprint image is represented as a phase image which consists of the continuous phase and the spiral phase (which corresponds to minutiae). An algorithm is proposed to reconstruct the continuous phase from minutiae. The proposed reconstruction algorithm has been evaluated with respect to the success rates of type-I attack (match the reconstructed fingerprint against the original fingerprint) and type-II attack (match the reconstructed fingerprint against different impressions of the original fingerprint) using a commercial fingerprint recognition system. Given the reconstructed image from our algorithm, we show that both types of attacks can be successfully launched against - - a fingerprint recognition system.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 2 )
Biometrics Compendium, IEEE

Date of Publication:

Feb. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.