Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Frequency Estimation by Phase Unwrapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
McKilliam, R.G. ; Sch. of Inf. Technol. & Electr. Eng., Univ. of Queensland, Brisbane, QLD, Australia ; Quinn, B.G. ; Clarkson, I.V.L. ; Moran, B.

Single frequency estimation is a long-studied problem with application domains including radar, sonar, telecommunications, astronomy and medicine. One method of estimation, called phase unwrapping, attempts to estimate the frequency by performing linear regression on the phase of the received signal. This procedure is complicated by the fact that the received phase is `wrapped' modulo and therefore must be `unwrapped' before the regression can be performed. In this paper, we propose an estimator that performs phase unwrapping in the least squares sense. The estimator is shown to be strongly consistent and its asymptotic distribution is derived. We then show that the problem of computing the least squares phase unwrapping is related to a problem in algorithmic number theory known as the nearest lattice point problem. We derive a polynomial time algorithm that computes the least squares estimator. The results of various simulations are described for different values of sample size and SNR.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 6 )