Cart (Loading....) | Create Account
Close category search window
 

Steering by Gazing: An Efficient Biomimetic Control Strategy for Visually Guided Micro Aerial Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kerhuel, L. ; Nat. Center for Sci. Res., Univ. of the Mediterranean, Marseille, France ; Viollet, S. ; Franceschini, N.

OSCAR II is a twin-engine aerial demonstrator equipped with a monocular visual system, which manages to keep its gaze and its heading steadily fixed on a target (i.e., a dark edge or a bar) in spite of the severe random perturbations applied to its body via a ducted fan. The tethered robot stabilizes its gaze on the basis of two oculomotor reflexes (ORs) inspired by studies on animals: 1) a visual-fixation reflex (VFR) and 2) a vestibulo-ocular reflex (VOR). One of the key features of this robot is that the eye is decoupled mechanically from the body about the vertical (i.e., yaw) axis. To meet the conflicting requirements of high accuracy and fast ocular responses, a miniature (2.4 g) voice-coil motor (VCM) was used, which enables the eye to make a change of orientation with an unusually short rise time (19 ms). The robot, which was equipped with a high-bandwidth (7 Hz) ??VOR,?? which is based on an inertial microrate gyro, is capable of accurate visual fixation as long as there is light. The robot is also able to pursue a moving target in the presence of erratic gusts of wind. Here, we present the two interdependent control schemes driving the eye in the robot and the robot in space with no knowledge of the robot's angular position. This ??steering-by-gazing?? control strategy, which is implemented on this lightweight (100 g) miniature aerial robot, demonstrates the effectiveness of this biomimetic visual/inertial heading control strategy.

Published in:

Robotics, IEEE Transactions on  (Volume:26 ,  Issue: 2 )

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.