Cart (Loading....) | Create Account
Close category search window
 

Common architecture for decoding turbo and LDPC codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gautham, T.S.V. ; Dept. of Electr. Eng., Indian Inst. of Technol. Madras, Chennai, India ; Thangaraj, A. ; Jalihal, D.

Turbo codes and Low Density Parity Check (LDPC) codes have been shown to be practical codes that can approach Shannon capacity in several communication systems. In terms of performance and implementation complexity, LDPC codes and turbo codes are highly comparable, especially at coding rates around 1/2. In many recent wireless standards such as 3GPP LTE and WiMax, both turbo and LDPC codes have been recommended at the encoder. However, the decoder for turbo codes involves trellises and the BCJR algorithm, while the decoder for LDPC codes uses sparse graphs and the message passing algorithm. Therefore, in several implementations, a designer is forced to implement either the turbo decoder or the LDPC decoder. The main idea behind this work is to enable the implementation of both decoders using a common architecture. We view the constituent convolutional code in a turbo code as a block code, and construct a sparse parity check matrix for it. Then, the sparse matrix and the associated bipartite graph are used for decoding the convolutional code by soft message passing algorithms. Simulation results show a manageable degradation in performance with a reduction in complexity.

Published in:

Communications (NCC), 2010 National Conference on

Date of Conference:

29-31 Jan. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.