By Topic

Recrystallization, Electric Flame-Off Characteristics, and Electron Backscatter Diffraction of Copper Bonding Wires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fei-Yi Hung ; Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, TAIWAN ; Truan-Sheng Lui ; Li-Hui Chen ; Yi-Chang Lin

In the present study, the neck fracture properties of annealed wire with ¿ = 20 ¿m (0.8 mil) at 200°C ~ 300°C for 1 h and unannealed wire were compared. The microstructural characteristics, the mechanical properties and the texture transition using electron back scatter diffraction methods before and after an electric flame-off (EFO) process were also studied. Experimental results indicate that the annealing temperatures of more than 225°C, the 20 ¿m copper wires possessed a fully annealed structure, the tensile strength and the hardness decreased, and the elongation was raised. Through recrystallization, the matrix structure transferred from long, thin grains to equiaxed grains and a few annealed twins. The microstructure of the free air ball (FAB) after an EFO process consisted of column-like grains, and grew from the heat-affected zone (HAZ) to the Cu ball. For the 225°C annealed and unannealed wires, their preferred orientations on the wire and the neck were ¿100¿//AD. Under the thermal effect of EFO, the orientation of the Cu balls were mainly ¿101¿//AD and ¿111¿//AD for annealed wires. Additionally, the hardness of the Cu balls and the strength of the neck sites of the EFO wires were able to affect the reliability of the copper wire bonding.

Published in:

IEEE Transactions on Advanced Packaging  (Volume:33 ,  Issue: 1 )