By Topic

Control of an Exoskeleton for Realization of Aquatic Therapy Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kyoungchul Kong ; Dept. of Mech. Eng., Univ. of California at Berkeley, Berkeley, CA, USA ; Hyosang Moon ; Doyoung Jeon ; Tomizuka, M.

Exoskeletons are attracting great attention as a new means of rehabilitation devices. In such applications, control algorithms of exoskeletons are often inspired by nature for natural and effective assistance for patients. In this paper, a control algorithm inspired by aquatic therapy is introduced. Aquatic therapy provides various beneficial effects for rehabilitation based on useful properties of water, e.g., buoyancy and drag. The proposed controller calculates joint torques equivalent to the buoyant and drag forces. Then, an exoskeleton-type assistive device generates the calculated joint torques to provide the similar effects as aquatic therapy. In this paper, the Sogang University biomedical assist robot is utilized as a testbed. This paper also discusses the mechanical impedance of actuators, which obstructs implementation of controllers in practice. The resistive forces generated by actuators are precisely modeled and compensated to realize the control algorithm inspired by aquatic therapy correctly and effectively.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:15 ,  Issue: 2 )