By Topic

Model Identification and Control Method Study on Electro-Hydraulic Pressure Servo System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Junpeng Shao ; Dept. of Mech. Power Eng., Harbin Univ. of Sci. & Technol., Harbin, China ; Guihua Han ; Yuhong Dong ; Zhongwen Wang

Mathematic model of electro-hydraulic pressure servo test bench was obtained based on xPC technique. In order to improve the tracking performance of the pressure servo system a new nonlinear hybrid controller was developed according to the mathematic model, which composed of a classical PID controller and a fuzzy controller based on self-adjusting modifying factor. And interpolation method was used in the modifying factor fuzzy number model; a fuzzy switching mode was employed to avoid the undesirable disturbances caused by the switchover between the two control methods. The hardware-in-the-loop simulation results show that the problems of steady-state error for fuzzy control and rapidity for PID control are solved, and the comprehensive performance of electrohydraulic pressure servo is enhanced when load rigidity and mass changed.

Published in:

Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on

Date of Conference:

7-9 Dec. 2009