Cart (Loading....) | Create Account
Close category search window
 

On High-Order Denoising Models and Fast Algorithms for Vector-Valued Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brito-Loeza, C. ; Dept. of Math. Sci., Univ. of Liverpool, Liverpool, UK ; Ke Chen

Variational techniques for gray-scale image denoising have been deeply investigated for many years; however, little research has been done for the vector-valued denoising case and the very few existent works are all based on total-variation regularization. It is known that total-variation models for denoising gray-scaled images suffer from staircasing effect and there is no reason to suggest this effect is not transported into the vector-valued models. High-order models, on the contrary, do not present staircasing. In this paper, we introduce three high-order and curvature-based denoising models for vector-valued images. Their properties are analyzed and a fast multigrid algorithm for the numerical solution is provided. AMS subject classifications: 68U10, 65F10, 65K10.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 6 )

Date of Publication:

June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.